Gyrokinetic Simulation of Turbulence Transport with Kinetic Electrons and Electromagnetic Perturbations

Yang Chen Center for Integrated Plasma Studies University of Colorado at Boulder

In collaboration with:

S. E. Parker, B. I. Cohen, A. M. Dimits, W. M. Nevins,

D. Shumaker, V. K. Decyk and J. N. Leboeuf (Summit Team)

Work supported by DOE SciDAC Plasma Microturbulence Project

Outline

- \bullet The "High- β Problem" and Solution
- General Observations from Nonlinear Simulations
- \bullet Effect of β on ITG Turbulence and Transport
- Summary and Future Work

The "High- β Problem"

$$\left(-
abla_{\perp}^2+etarac{m_i}{m_e}
ight)A_{\parallel}=-eta u_{\parallel
m e}$$

- First observed by Cummings ('94)
- Does not appear in implicit Eulerian codes (Kotschenreuther et. al. '95; Dorland et. al. GS2, '00)
- Solved in explicit Eulerian codes (Hammett, Jenko, '01 PMP mtg; Candy and Waltz, GYRO, '02)

$$abla imes \widetilde{\mathbf{B}} = \mu_0 j_{\parallel \mathrm{e}}$$
 \longrightarrow $\left(-
abla_{\perp}^2 + eta rac{m_i}{m_e}
ight) A_{\parallel} = -eta u_{\parallel \mathrm{e}}$ $\int f_0(p_{\parallel}) v_{\parallel} \ dv = rac{m_i}{m_e} A_{\parallel}$

 $\beta \sim 1\%$, for ITG modes $\nabla_{\perp}^2 \sim 0.01$, $\beta \frac{m_i}{m_e} \sim 20$.

A very stiff problem!

Key Elements of the New Algorithm

- Use canonical momentum $p_{\parallel}=v_{\parallel}-\frac{e}{m_e}A_{\parallel}$. (Hahm et. al. '88)
 - to eliminate $\frac{\partial A_{\parallel}}{\partial t}$

$$E_{\parallel} = -
abla_{\parallel}\phi - rac{\partial A_{\parallel}}{\partial t}$$
 $m_e rac{dp_{\parallel}}{dt} = -eE_{\parallel} - e(v_{\parallel}
abla A_{\parallel} + rac{\partial A_{\parallel}}{\partial t})$

- δf method with $\delta f = f_e f_0(p_{\parallel})$
- Split-weight Scheme (Manuilskiy and Lee '00, Chen and Parker '01)
 - to increase $\triangle t$
- New algorithm for Ampere's equation

SOLUTION

$$u_{\parallel \mathrm{e}}(\mathbf{x}) = \sum_{j} w_{\mathrm{ej}} \; p_{\parallel \mathrm{j}} \; S(\mathbf{x}_{j} - \mathbf{x})$$

 $w_{\rm ei}$ – electron weight

S – the particle shape function

The evaluation of the "zero-order" electric current mimics that of the perturbed current, so that effects of particle shape and finite particle number to both currents offset each other.

$$\begin{split} \frac{m_i}{m_e} A_{\parallel} &\approx \frac{V}{N} \sum_j p_{\parallel j}^2 \, A_{\parallel}(\mathbf{x}_j) \, S(\mathbf{x} - \mathbf{x}_j) \\ A_{\parallel}(\mathbf{x}_j) &= \sum_{\mathrm{l,m,n}} A_{\parallel}(\mathbf{x}_{\mathrm{l,m,n}}) S(\mathbf{x}_j - \mathbf{x}_{\mathrm{l,m,n}}), \\ & \mathrm{interpolated \ from} \ A_{\parallel} \ \mathrm{at \ nearby \ grids} \end{split}$$

Suppose
$$f_e = f_0(v_{||}) = f_0(p_{||}) + w$$
.

electron weight

$$w = f_0(v_{\parallel}) - f_0(p_{\parallel}) \approx -\frac{1}{T} p_{\parallel} A_{\parallel} f_0(p_{\parallel})$$

$$e^{-m_e(p_{\parallel} + \frac{1}{m_e} A_{\parallel})^2 / 2T}$$

$$w \sim p_{\parallel}A_{\parallel}$$

- \bullet Finite β effect on slab ITG
- Alfven wave frequency also accurate for $\beta \sim 10\%$

Current Features of SUMMIT Framework

- Flux-tube using field-line-following coordinates (Beer '95)
- Nonshifted, circular equilibrium
- Passing + trapped kinetic electrons
- Lorentzian electron-ion collisions
- Domain decomposition in z with cloning (C. Kim and S. Parker, '00)
- Parallel nonlinearity $E_{\parallel} \frac{\partial \delta f}{\partial v_{\parallel}}$
- Field-solving comparable to particle-pushing
- Work underway to merge with codes using quasi-ballooning coordinates in general geometry (Leboeuf, Dimits, Shumaker)

Linear Benchmark with Continuum Codes Shows Good Agreement

• $k_y \rho_i = 0.3$. Deuterium plasma with $R_0/L_T = 9$, $\eta_i = 3$, q = 2, $\hat{s} = rq'/q = 1$

Candy and Waltz, JCP 186(2), 545 (2003) Dorland, 18th IAEA (2000)

Convergence Test

- $\beta = 0.8\%, m_i/m_e = 400$
- $L_x = L_y = 64\rho_i$, $N_x = N_y = 64$, $N_z = 32$
- $k_y \rho_i \leq 0.8$
- Convergence achieved with 32 particles per species per cell
- Converged w.r.t. box size $64\rho_i \times 64\rho_i \longrightarrow 128\rho_i \times 128\rho_i$, for low β , $\frac{m_i}{m_e} = 1837$

Some Observations from Nonlinear Simulations

- Cyclone Base Case $R/L_T = 6.9$, $R/L_n = 2.2$, q = 1.4, $\hat{s} = 0.78$ (shot #81499, t=4000ms)
- Nonlinear Landau damping $(E_{\parallel} \frac{\partial \delta f}{\partial v_{\parallel}})$ reduces χ_i by $\sim 30\%$ for $\beta = 0.8\%$
 - Consistent with Jenko and Scott, '98
- From $\frac{m_i}{m_e} = 1837$ to $\frac{m_i}{m_e} = 400 \chi_i$ increases significantly.
- Simulations with finite $\eta_e = \eta_i$ does not show significant contribution to χ_e from magnetic fluttering $\langle v_{\parallel} \widetilde{B}_r \delta f \rangle$
- At $\beta \frac{m_i}{m_e} > 1$, with periodic radial boundary condition, large radial box size leads to large saturation amplitude of the fundamental mode $k_y = \frac{2\pi}{L_y}$ and strong coordation across radial boundaries.
 - disappear with nonperiodic b.c.
- β -dependence of χ_i sensitive to collision rate and η_e .

Effect of β on Ion Heat Transport

- \bullet DIII-D Cyclone Base Case, $R/L_T=6.9,\,R/L_n=2.2,\,q=1.4,\,\hat{s}=0.78$
- $m_i/m_e = 1837$, NX = NY = 64, NZ = 32, 4 Million per species
- $\nu_{\rm ei} L_n / v_{\rm Ti} = 0.136$
- Strong dependence of χ on β for low η_e and high collision rate
- Measured $\chi_i \sim 0.006 \chi_{\rm adi}$

Linear Evolution of the Zonal Flow Little Changed

- Initial $\delta n_e = 0$, nonzero δn_i
- Keep only n = 0 mode

Summary and Future Work

- \bullet Solved the "High- β Problem" in electromagnetic simulation of Ion-Larmor-Radius scale turbulence.
- The 3-D flux-tube code has full electron dynamics, including
 - trapped and passing particles
 - parallel nonlinearity
 - Lorentzian collision operator
 - Realistic mass ratio
- Linearly benchmarked with continuum codes
- β -scan of ion heat flux. Details of collision rate and η_e needed.

Future Work

- Implement quasi-ballooning coordinates, general geometry within the Summit Framework.
- More efficient Ampere solver